Anti-Mullerian-hormone-dependent regulation of the brain serine-protease inhibitor neuroserpin
نویسندگان
چکیده
منابع مشابه
Anti-Mullerian-hormone-dependent regulation of the brain serine-protease inhibitor neuroserpin.
The balance between tissue-type plasminogen activator (tPA) and one of its inhibitors, neuroserpin, has crucial roles in the central nervous system, including the control of neuronal migration, neuronal plasticity and neuronal death. In the present study, we demonstrate that the activation of the transforming growth factor-beta (TGFbeta)-related BMPR-IB (also known as BMPR1B and Alk6)- and Smad...
متن کاملNeuroserpin, an axonally secreted serine protease inhibitor.
We have identified and chromatographically purified an axonally secreted glycoprotein of CNS and PNS neurons. Several peptides derived from it were microsequenced. Based on these sequences, a fragment of the corresponding cDNA was amplified and used as a probe to isolate a full length cDNA from a chicken brain cDNA library. Because the deduced amino acid sequence qualified the protein as a nove...
متن کاملDeficiency in Serine Protease Inhibitor Neuroserpin Exacerbates Ischemic Brain Injury by Increased Postischemic Inflammation
The only approved pharmacological treatment for ischemic stroke is intravenous administration of plasminogen activator (tPA) to re-canalize the occluded cerebral vessel. Not only reperfusion but also tPA itself can induce an inflammatory response. Microglia are the innate immune cells of the central nervous system and the first immune cells to become activated in stroke. Neuroserpin, an endogen...
متن کاملIdentification of a novel targeting sequence for regulated secretion in the serine protease inhibitor neuroserpin.
Ns (neuroserpin) is a member of the serpin (serine protease inhibitor) gene family that is primarily expressed within the central nervous system. Its principal target protease is tPA (tissue plasminogen activator), which is thought to contribute to synaptic plasticity and to be secreted in a stimulus-dependent manner. In the present study, we demonstrate in primary neuronal cultures that Ns co-...
متن کاملThe Anti-Mullerian hormone and ovarian cancer.
The Anti-Mullerian hormone (AMH), which is produced by fetal Sertoli cells, is responsible for regression of Mullerian ducts, the anlagen for uterus and Fallopian tubes, during male sex differentiation. Ovarian granulosa cells also secrete AMH from late in fetal life. The patterns of expression of AMH and its type II receptor in the post-natal ovary indicate that AMH may play an important role ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Science
سال: 2008
ISSN: 1477-9137,0021-9533
DOI: 10.1242/jcs.031872